You can use the GPS Sensor to help you navigate the VRC Spin Up Playground in VEXcode VR, with the (X, Y) coordinates of locations.
How the GPS Sensor Works in VRC Spin Up in VEXcode VR
The GPS (Game Positioning System) Sensor, uses the VEX Field Code on the interior of the Field to triangulate X, Y position and heading. That checkerboard pattern in the Field Code is used to identify the location for each individual block in that pattern. The VEX GPS is an absolute position system, so it does not drift nor does it require calibration on a per-field basis.
To sense the Field Code, the VEX GPS Sensor, a black and white camera, is mounted on the rear of the robot and faces rearwards.
The GPS Sensor reports the (X, Y) coordinates of the center of rotation of Disco on the Field, in millimeters or inches.
Identifying (X, Y) Coordinates on the VRC Field
The Field in VRC Spin Up in VEXcode VR ranges from approximately -1800mm to 1800mm for the X and Y positions. The starting location of Disco depends on the starting position selected.
The center location, or the origin (0,0), is located in the center of the Field.
Identifying the (X, Y) Coordinates of the GPS Sensor
The GPS Sensor can be used to identify the X and Y coordinates of Disco on the Field. These coordinates reflect the location of Disco's center of rotation, which is located between the front wheels, as indicated in this image.
Reporter blocks from the Sensing category in the Toolbox can be used to report positional values from the GPS Sensor in your project.
The current X and Y coordinates of Disco's GPS Sensor on the Field can be displayed in the Print Console using blocks from the Looks category in the Toolbox.
Using the GPS Sensor to Help Disco Navigate the Field
You can use the GPS Sensor to help Disco navigate the Field by driving to specific locations using your knowledge of the Cartesian coordinate system. Using the GPS Sensor, Disco can drive along the X or Y-axes until the value of the sensor is greater than or less than a threshold value. This allows Disco to drive using sensor feedback instead of set distances.
In this project, Disco will drive forward from starting position C, until the value of the X-axis is greater than -600 millimeters (mm), then stop, placing Disco in front of a disc.
Note: You may have to account for the robot’s inertia or drift when setting your parameters.
GPS Sensor Location and the Center of Rotation on Disco
The GPS Sensor is mounted in the rear of the robot, whereas Disco's center of rotation is located in the front of the robot.
The GPS Sensor is configured in VRC Spin Up in VEXcode VR to account for this offset (approximately 214 mm), so that the values that are reported reflect the center of rotation of Disco.
(X, Y) Coordinates of Game Elements in VRC Spin Up for VEXcode VR
Knowing the coordinates of game elements, like the Loaders, Rollers, and Barriers, can help you plan your projects in VRC Spin Up in VEXcode VR.
The following reference is provided as a guide, based on the Field setup at the start of each Match, for the approximate center point coordinate locations of the game elements on the VRC Field in the Playground.
Loader Coordinates
Roller Coordinates
Barrier Coordinates
Identifying the GPS Heading of Disco
The GPS Sensor can also be used to identify the GPS heading. The heading ranges from 0 degrees to 359.9 degrees, following a compass heading style.
When using the GPS Sensor to detect location, the GPS heading will remain constant in relation to the Field, regardless of the starting position of the robot.